May see from the chemical name, it is composed of nitrogen and gallium ions a semiconductor material, on the physical properties, the forbidden bandwidth is greater than 2.2 eV, also known as a wide bandgap semiconductor material.

In fact, gallium nitride (GaN) technology is not a new semiconductor technology and has been commonly used in light-emitting diodes (LEDs) since 1990, but it is expensive. From the manufacturing process, no liquid gallium nitride, cannot use monocrystalline silicon production process of traditional draw Ferrari out the single crystal, need to be pure, was synthesized by gas and nitrogen gas properties is very stable, gallium is very rare metal (gallium is associated ore, no gallium concentration of ore formation, mainly derived from bauxite, the cost is high), and the reaction time is long, slow, The reaction produces more byproducts. The production of gallium nitride has strict equipment requirements, complex technology, and very low production capacity, and many factors lead to the high cost of single crystal gallium nitride materials.

No alt text provided for this image

Compared with the first generation semiconductor material of silicon (Si) and the second generation semiconductor material of gallium arsenide (GaAs), the third generation semiconductor material (also referred to as wide bandgap semiconductor material) of silicon carbide (SiC) or gallium nitride (GaN) possesses better physical and chemical characteristics while having the features of fast switching speed, small size, high efficiency, fast heat dissipation, etc.



The third generation of semiconductor materials, represented by gallium nitride (GaN), silicon carbide (SiC), zinc oxide (ZnO), and diamond, are the main materials in the 5G era, among which gallium nitride (GaN) and silicon carbide (SiC) have the largest market and development space. To see, in the military field, GaN can be used for radar, electronic countermeasures, missiles, and wireless communication, silicon carbide (SiC) is mainly used in jet engines, tank engines, ship engines; In the civil and commercial field, gallium nitride (GaN) is used in base stations, satellite communications, cable TV, mobile phone chargers and other small home appliances, while silicon carbide (SiC) is mainly used in electric vehicles, consumer electronics, new energy, rail transit, etc.

No alt text provided for this image

The third generation refers to the iterative change of semiconductor materials, from the first generation, the second generation to the third generation. The first generation of semiconductor materials mainly refers to Si and Ge element-based semiconductors, which are the basic materials of semiconductor discrete devices, integrated circuits, and solar cells. However, after the long-term development of silicon-based chips, they are gradually approaching the limit of materials, and the potential of improving the performance of silicon-based devices is also becoming smaller and smaller.


Autopilot, Augmented Reality, and Robot

Compared with silicon devices, gallium nitride devices emit the laser signal at a higher speed and create a 360-degree three-dimensional panorama by the laser/LiDAR system, further improving autopilot, augmented reality, even the development of robots.

Breakthrough in Medical Technology

No alt text provided for this image

The third-generation semiconductor material can be employed on wireless charging, therefore in addition to the consumer electronics are known to all, some of the medical devices may also broaden their fields of usage via wireless charging. For instance, a colonoscopy may be conducted by having the examinee swallow an X-ray capsule, and since medical images with 10x or even 100x super-resolution can be provided, MRI can achieve accurate detection of cancer and disorder at an earlier stage. Furthermore, since implantable medical products including cardiac pumps, pacemakers, etc. no longer need an external power supply, the probability of infection is significantly reduced, so patients would adopt early and their quality of life is enhanced.

5G changes the view on human life

No alt text provided for this image

High frequencies such as 5G adopt silicon carbide and gallium nitride that are high voltage resistant, high heat resistant, and of high frequency to reduce chip area, simplify the circuit and lower the need for cooling, and can be used in the field of radiofrequency, semiconductor illumination, laser, etc. It can be expected that, in the future, with the help of the commercialization of 5G, the view on human life will be significantly changed.

 The typical third-generation semiconductor materials of silicon carbide (SiC) and gallium nitride (GaN) have the advantages of high power, high operating temperature, high breakdown voltage, high current density, and high-frequency characteristics, which allow a significant reduction of chip area and simplification of peripheral circuit design to achieve the goals of reducing modules, system peripheral devices, and the volume of the cooling system.

The existing gallium nitride power devices are made from the silicon-based gallium nitride and silicon carbide-based gallium nitride wafers, wherein the silicon-based gallium nitride is likely to be more efficient than the silicon carbide devices as far as area and total cost are concerned and is more suitable for the field of mid-low voltage/high frequency. The comparison chart of working frequency and maximum power for different semiconductor devices is shown below:



The power amplifiers (PA) used on the base stations of the current mobile communication systems are mainly based on the silicon laterally diffused metal oxide semiconductor (LDMOS) technology. However, the LDMOS technology is only applicable to the low-frequency stage because the bandwidth of the LDMOS power amplifier decreases drastically as the frequency increases. The manufacturing process of the LDMOS used for the frequency band of 3.5 GHz is close to its limit. Since the fifth-generation mobile communication system (5G) partly adopts higher frequency bands (three major frequency bands are 3.5 GHz, 26 GHz, and 28 GHz) in signal transmission to achieve high-speed transmission and super low delay capability, LDMOS is getting harder to meet the performance requirements.

Compared with silicon carbide-based gallium nitride devices, silicon-based gallium nitride devices have an issue of self-heating due to poor heat dissipation on the substrate, which causes a decrease in the performance of gallium nitride transistors, and the silicon-based gallium nitride devices are not suitable to be used in an operating environment of high temperature and high frequency. Silicon carbide and gallium nitride have an excellent lattice match, plus the thermal conductivity of silicon carbide material is high (approximately three times as much as silicon), therefore the issue of gallium nitride material having an intrinsically low thermal conductivity is solved, and hence silicon carbide-based gallium nitride is advantageous to the application of 5G base station and can be expected to become the mainstream on the market.



Although we have now developed into third-generation semiconductor materials, the first and second-generation semiconductor materials have not been eliminated and are still widely used. Why did the emergence of the second generation not replace the first generation? Can third-generation semiconductors completely replace traditional semiconductor materials?

Silicon and compound semiconductors are two complementary materials. In the application of semiconductors, the two are often combined to take advantage of each other, to produce products that meet higher requirements, such as high-reliability, high-speed defense military products. Therefore, the first and second-generation semiconductor materials are in a state of long-term commonality.

Leave a comment

All comments are moderated before being published